Feasibility and Infeasibility of Adaptively Secure Fully Homomorphic Encryption

نویسندگان

  • Jonathan Katz
  • Aishwarya Thiruvengadam
  • Hong-Sheng Zhou
چکیده

Fully homomorphic encryption (FHE) is a form of publickey encryption that enables arbitrary computation over encrypted data. The past few years have seen several realizations of FHE under different assumptions, and FHE has been used as a building block in many cryptographic applications. Adaptive security for public-key encryption schemes is an important security notion proposed by Canetti et al. It is intended to ensure security when encryption is used within an interactive protocol and parties may be adaptively corrupted by an adversary during the course of the protocol execution. Due to the extensive applications of FHE to protocol design, it is natural to understand whether adaptively secure FHE is achievable. In this paper we show two contrasting results in this direction. First, we show that adaptive security is impossible for FHE satisfying the (standard) compactness requirement. On the other hand, we show a construction of adaptively secure FHE that is not compact, but that does achieve circuit privacy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptively Secure Fully Homomorphic Signatures Based on Lattices

In a homomorphic signature scheme, given the public key and a vector of signaturesσ := (σ1, . . . , σl) over l messages μ := (μ1, . . . , μl), there exists an efficient algorithm to produce a signature σ′ for μ = f(μ). Given the tuple (σ′, μ, f), anyone can then publicly verify the validity of the signature σ′. Inspired by the recent (selectively secure) key-homomorphic functional encryption fo...

متن کامل

Introduction to Homomorphic Encryption

Homomorphic encryption enables computations on encrypted data. This property makes such encryption schemes useful in a wide variety of privacy preserving applications. This paper provides a brief survey on the homomorphic encryption. We describe the homomorphic cryptosystems from partially homomorphic encryption to fully homomorphic encryption. We also give some security analysis and describe h...

متن کامل

Universally Composable Efficient Multiparty Computation from Threshold Homomorphic Encryption

We present a new general multiparty computation protocol for the cryptographic scenario which is universally composable — in particular, it is secure against an active and adaptive adversary, corrupting any minority of the parties. The protocol is as efficient as the best known statically secure solutions, in particular the number of bits broadcast (which dominates the complexity) is Ω(nk|C|), ...

متن کامل

SESOS: A Verifiable Searchable Outsourcing Scheme for Ordered Structured Data in Cloud Computing

While cloud computing is growing at a remarkable speed, privacy issues are far from being solved. One way to diminish privacy concerns is to store data on the cloud in encrypted form. However, encryption often hinders useful computation cloud services. A theoretical approach is to employ the so-called fully homomorphic encryption, yet the overhead is so high that it is not considered a viable s...

متن کامل

Blind Turing-Machines: Arbitrary Private Computations from Group Homomorphic Encryption

Secure function evaluation (SFE) is the process of computing a function (or running an algorithm) on some data, while keeping the input, output and intermediate results hidden from the environment in which the function is evaluated. This can be done using fully homomorphic encryption, Yao's garbled circuits or secure multiparty computation. Applications are manifold, most prominently the outsou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013